
Dependency Parsing exercises:
Transition-based arc-eager parsing, non-projective parsing

Deadline: 24.05.2021

Please send completed solutions to waszczuk@hhu.de and evang@hhu.de with subject ”dependency home-
work” and attachment ”ex6 lastname(s).pdf”.

1. Arc-eager parsing.

(a) Enumerate the configurations an arc-eager transition-based parser goes through when parsing
the sentence:

ROOT Mary sees esteemed astronomers with telescopes .

root

nsubj

dobj

punct

amod

nmod

case

A transition is a left-arc, right-arc, shift, or reduce operation (LA, RA, SH, RE). At each step,
indicate the operation, the contents of the stack, the input buffer, and which dependency is
added, if any:1

transition stack buffer arcs

[ROOT] [Mary sees esteemed . . .] ∅
SH [ROOT Mary] [sees esteemed astronomers . . .]

LAnsubj [ROOT] [sees esteemed astronomers . . .] +(Mary
nsubj← sees)

.

(b) How does this compare to arc-standard parsing? In particular, do you think there could be
disadvantages (or advantages) for PP-attachments when using the arc-eager parser? In general,
can you think of typological properties of languages that could make arc-eager perform better
than arc-standard, or vice versa? Consider default word order (SVO, SOV, etc), free word order,
head-final vs head-first, degree of inflection, etc.

1A configuration is terminal if its buffer is empty, just as in the arc-standard system.

1

2. Non-projective parsing. Consider the following dependency tree:

ROOT What did economic news have little effect on ?

root

nsubj

obj

aux

punct

amod amod

nmod

case

(a) Determine a projective order for the tree above. It can be obtained by traversing the sentence with
an in-order traversal of the tree.2 Then re-order the words in the sentence accordingly (i.e. place
each word on its position according to the projective order) and draw the resulting dependency
tree to verify that there are no crossing arcs with this word order.

(b) Propose a transition sequence that allows to reconstruct the non-projective dependency tree
above using the online reordering parser. A transition is left-arc, right-arc, shift, or swap (LA,
RA, SH, SW). At each step, indicate the operation, the contents of the stack, the input buffer, and
which dependency is added, if any:

transition stack buffer arcs

[ROOT] [What did economic news . . .] ∅
SH [ROOT What] [did economic news . . .]

.

2See https://en.wikipedia.org/wiki/Tree_traversal#In-order.

2

https://en.wikipedia.org/wiki/Tree_traversal#In-order

