
Dependency Parsing exercises:
Dynamic oracles

June 10, 2021

1. Consider the following dependency tree:

The Buddhist asked the vendor for advice but did not get any

det nsubj

obj

obl

conj

det case obj

cc

aux

advmod

Assume the arc-eager parser and the following partial transition sequence predicted by a classi-
fier:1

transition stack buffer arcs

[ROOT] [The Buddhist asked the vendor . . .] ∅
SH [ROOT The] [Buddhist asked the vendor . . .]

LA [ROOT] [Buddhist asked the vendor . . .] +(The← Buddhist)

SH [ROOT Buddhist] [asked the vendor . . .]

LA [ROOT] [asked the vendor . . .] +(Buddhist← asked)

RA [ROOT asked] [the vendor for advice . . .] +(ROOT→ asked)

SH [ROOT asked the] [vendor for advice . . .]

LA [ROOT asked] [vendor for advice . . .] +(the← vendor)

SH [ROOT asked vendor] [for advice . . .]

As you can see, the parser made a mistake in the last transition. Answer the following two ques-
tions:

• How will the parser recover from the mistake if it follows the static oracle, i.e., if the re-
maining predictions are consistent with the static oracle? Show the remaining part of the
transition sequence.

• What if the remaining predictions of the parser are consistent with the dynamic oracle in-
stead? What will be the set of reconstructed arcs then? Show one possible transition sequence
and in each step (row) indicate alternative transitions licensed by the dynamic oracle (if any).

Solution: The static oracle fails to retrieve two additional arcs:
1The labels are ignored for simplicity.

1

transition stack buffer arcs

.

SH [ROOT asked vendor] [for advice but did not . . .]

SH [ROOT asked vendor for] [advice but did not get any]

LA [ROOT asked vendor] [advice but did not get any] +(for← advice)

SH [ROOT asked vendor advice] [but did not get any]

SH [. . . vendor advice but] [did not get any]

SH [. . . advice but did] [not get any]

SH [. . . advice but did not] [get any]

LA [. . . advice but did] [get any] +(not← get)

LA [. . . advice but] [get any] +(did← get)

LA [. . . advice] [get any] +(but← get)

SH [. . . advice get] [any]

RA [. . . advice get any] [] +(get→ any)

The dynamic oracle on the other hand is able to retrieve all but one arc, at the price of attaching
vendor to for or advice...:

transition stack buffer arcs

.

SH [ROOT asked vendor] [for advice but did not . . .]

LA (SH) [ROOT asked] [for advice but did not . . .] +(vendor← for)

SH [ROOT asked for] [advice but did not . . .]

LA [ROOT asked] [advice but did not . . .] +(for← advice)

RA [ROOT asked advice] [but did not get any] +(asked→ advice)

RE (SH) [ROOT asked] [but did not get any]

SH [ROOT asked but] [did not get any]

SH [ROOT asked but did] [not get any]

SH [ROOT asked but did not] [get any]

LA [ROOT asked but did] [get any] +(not← get)

LA [ROOT asked but] [get any] +(did← get)

LA [ROOT asked] [get any] +(but← get)

RA [ROOT asked get] [any] +(asked→ get)

RA [ROOT asked get any] [] +(get→ any)

The alternative transitions, licensed by the oracle but not selected by the parser, are marked in
gray. In particular, in the second row of the table above, LA is optimal because (i) there’s no right-
arc arc from vendor to a word in the buffer, (ii) nor there is a left-arc from a word in the (tail2 of
the) buffer to vendor. In the same context, there is no arc between for and any word in the stack,
hence SH is optimal as well.3 See the notes from lecture 7 for more details about the conditions
required for a transition to be optimal according to the dynamic oracle for the arc-eager system.

2. Consider the following dependency tree:

On this issue the judge scheduled the hearing

case

det det nsubj

obj

det

nmod

Assume the arg-eager parsing strategy, where:

• The initial configuration is ([ROOT], [On, this, issue, . . . , the, hearing],∅)
2I.e., the buffer with the exception of its head.
3SH is also used in the transition sequence of the static oracle at this point, but the dynamic oracle allows to later attach vendor

to advice, thus removing it from the stack.

2

• A terminal configuration is any configuration of the form (σ, [],A)

What will be the set of arcs if the dynamic oracle is used to reconstruct this tree? Will it differ from
the set of arcs in the tree shown above? If so, why is that the case?
Solution: Using the conventional static oracle:

transition stack buffer arcs

[ROOT] [On this issue . . .] ∅
SH [ROOT On] [this issue . . .]

SH [ROOT On this] [issue the judge . . .]

LAdet [ROOT On] [issue the judge . . .] +(this
det← issue)

LAcase [ROOT] [issue the judge . . .] +(on
case← issue)

SH [ROOT issue] [the judge scheduled . . .]

SH [ROOT issue the] [judge scheduled . . .]

LAdet [ROOT issue] [judge scheduled . . .] +(the
det← judge)

SH [ROOT issue judge] [scheduled the hearing]

LAnsubj [ROOT issue] [scheduled the hearing] +(judge
nsubj← scheduled)

SH [ROOT issue scheduled] [the hearing]

SH [ROOT issue scheduled the] [hearing]

LAdet [ROOT issue scheduled] [hearing] +(the
det← hearing)

RAobj [ROOT issue scheduled hearing] [] +(scheduled
obj→ hearing)

Thus the static oracle is able to retrieve 6 arcs out of 7 (or rather 6 out of 8, if we count the implicit
ROOT→ scheduled arc). In particular, it is not able to retrieve the nmod arc – this is because the
tree is non-projective.

If we look at the dynamic oracle, it’s even worse:

transition stack buffer arcs

[ROOT] [On this issue . . .] ∅
SH [ROOT On] [this issue . . .]

SH [ROOT On this] [issue the judge . . .]

LAdet [ROOT On] [issue the judge . . .] +(this
det← issue)

LAcase [ROOT] [issue the judge . . .] +(on
case← issue)

SH [ROOT issue] [the judge scheduled . . .]

SH [ROOT issue the] [judge scheduled . . .]

LAdet [ROOT issue] [judge scheduled . . .] +(the
det← judge)

SH [ROOT issue judge] [scheduled the hearing]

LAnsubj [ROOT issue] [scheduled the hearing] +(judge
nsubj← scheduled)

At this point, SH (proposed by the static oracle) is not allowed, since there’s an (implicit) arc
ROOT→ scheduled (see Eq. 5 in the lecture notes).4

A transition sequence actualy exists which allows to retrieve 7 arcs out of 8 arcs (at the price of
creating a false-positive arc: issue← scheduled):

4However, even if we removed this arc from consideration, the dynamic oracle would not be able to restore more arcs than the
static oracle.

3

transition stack buffer arcs

[ROOT] [On this issue . . .] ∅
SH [ROOT On] [this issue . . .]

SH [ROOT On this] [issue the judge . . .]

LAdet [ROOT On] [issue the judge . . .] +(this
det← issue)

LAcase [ROOT] [issue the judge . . .] +(on
case← issue)

SH [ROOT issue] [the judge scheduled . . .]

SH [ROOT issue the] [judge scheduled . . .]

LAdet [ROOT issue] [judge scheduled . . .] +(the
det← judge)

SH [ROOT issue judge] [scheduled the hearing]

LAnsubj [ROOT issue] [scheduled the hearing] +(judge
nsubj← scheduled)

LA? [ROOT] [scheduled the hearing] +(issue
?← scheduled)

RAroot [ROOT scheduled] [the hearing] +(ROOT
root→ scheduled)

SH [ROOT scheduled the] [hearing]

LAdet [ROOT scheduled] [hearing] +(the
det← hearing)

RAobj [ROOT scheduled hearing] [] +(scheduled
obj→ hearing)

This somewhat surprising result stems from the fact that the arc-eager parser is only arc-decomposable
w.r.t. projective structures. Otherwise, we would expect the dynamic oracle to capture this tran-
sition sequence (and restore 7 out of 8 arcs).

4

