
Dependency Parsing exercises:
Implementation of a transition-based parser (part 2)

Deadline for sub-exercises 1–3: 14.06.2021
Deadline for sub-exercises 4–6: 17.06.2021

Please send completed solutions to evang@hhu.de with subject “dependency homework” and attach-
ment parser.py.

Matthew Honnibal writes: “One of the reasons parser.py is so fast is that it does unlabelled parsing.
Based on previous experiments, a labelled parser would likely be about 40x slower, and about 1% more
accurate. Adapting the program to labelled parsing would be a good exercise for the reader, if you
have access to the data.” This is exactly what we are going to do in this exercise. Note that in my own
experiments, I found the labeled parser to be only about 5x slower than the unlabeled one.

You can use the example solution to exercise 8 as the basis for your work.
There are a number of things that need to be modified for labeled parsing:

1. The main train function (called main in the original code) outputs the unlabeled attachment
score (UAS) that the final trained model achieves on the validation data. The UAS is the proportion
of words (here: not counting punctuation) that have the correct head. Adapt the function to also
output labeled attachment score (LAS). The LAS is the proportion of words (here: not counting
punctuation) that have the correct head and the correct label.

2. Similarly, adapt the train function and the Parser.train one method to measure and output
not only UAS, but also LAS on the training data after each iteration.

3. After making only the above changes, how high is the LAS that the parser achieves? Why?

4. Change the parser so that it actually creates labeled edges.

(a) To create labeled edges, the parser needs a different set of transitions. Instead of just SHIFT,
LEFT, and RIGHT, it needs SHIFT, LEFT-nsubj, RIGHT-nsubj, LEFT-advmod, RIGHT-advmod
and so on, one “left” and one “right” action for every dependency label. Extract the list of
labels from the training data and adapt the MOVES attribute accordingly. It should still be a
list of integers. Also create helper functions is left, is right and label that enable the
parser to look up for a given transition whether it is a “left” or “right” transition, and which
label it has, if any.

(b) Optional exercise for extra credit: instead of hard-coding MOVES and the additional data
structures, make it so that the parser determines the list of moves dynamically depending
on the labels that occur in the training data, and stores them in attributes of Parser objects,
rather than module attributes. Note that this information then has to be stored along with
the saved model so future invocations of the parser can use it.

(c) Adapt the transition function to use the new set of transitions and create labeled edges.
Use the helper functions you created.

(d) Adapt the functions get valid moves and get gold moves (the dynamic oracle) to use the
new set of transitions. Hint: the logic of the dynamic oracle stays mostly the same. However,
make sure to mark all “left” and “right” transitions as costly when they are wrong. Also,
when returning a “right” or “left” transition as optimal, make sure that is has the correct
label.



(e) Adapt the main parse function to output labels as well as heads.

5. Test the parser. Train it for 1 instead of 15 iterations to save time. On my laptop, this takes about
15 minutes. UAS on the validation set should be about 86.6, and LAS 82.6.

6. Optional exercise for extra credit: why do you think the labeled parser has higher UAS than the
unlabeled parser (after one iteration)?

2


