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Today

Previous homework

Dependency Parsing in the Neural Age
Quick Revision
Slides accompanying Eliyahu Kiperwasser and Yoav Goldberg’s 2016 paper: Simple
and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations
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Data-driven Dependency Parsing: Methods

Transition-based

Projective: Arc-Standard, Arc-Eager, Arc-Hybrid...

Non-projective: Swap transitions, Pseudo-projective parsing...

Graph-based

Projective: Chart-based (Eisner’s algorithm)

Non-projective: Maximum Spanning Tree (Chu-Liu-Edmonds algorithm)

Key problem with all these: Feature extraction
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Simple and Accurate Dependency Parsing Using
Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser
Yoav Goldberg

Bar-Ilan University
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Contribution

I will show that BiLSTMs are great feature extractors,
because:

Global considerations (in local scoring)

Trainable (for whatever task)

Plug&Play (two different parsers)
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Main Results

In this talk:

We apply BiLSTM feature extraction for both greedy and
global inference parsing

We achieve very high parsing scores

using a very efficient algorithm (93.9 UAS, 800 words/sec, CPU,
Python)

Using this frustratingly simple feature extraction
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Parsing Background

There are two main frameworks for parsing:

Graph-based:

Global inference
Score factorized over parts
There are first, second & third order parsers.

Transition-based:

Greedy local inference
Score relies on current configuration, which is dependent on all
previous transitions
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Graph-based Parsing
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Graph-based Parsing (Inference)

Input Sentence: ”They ate pizza”
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Arc Score Function
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Arc Score Function

Similar story for transition-based parser

The choice of features is very important
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Arc Score Function

Similar story for transition-based parser

The choice of features is very important

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 9 / 42

Score( modifier head ) = F ( φ(modifier , head ; sentence) )



Let’s Talk about Features

(Previous Work)
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Manual Feature Templates
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Conventional Feature Representation

Slide credits: Shira Wein, Christopher Manning
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Conventional Feature Representation, cont.

Core feature templates: atomic elements of input/structure built so far, e.g.,
“word on top of stack” (s1.w)
“POS tag of word on top of stack” (s1.t)
“word at the beginning of buffer” (b1.w)
“POS tag of left child of second-topmost word on stack” (lc(s2).t)
...

Combination feature templates: combinations of about 1–3 of these, e.g.,
s1.w ∧ s1.t
lc(s2).t ∧ s2.t ∧ s1.t
...

Combination features: concrete instantiations of feature templates, e.g.,
s1.w = good ∧ s1.t = JJ
lc(s2).t = good ∧ s2.t = VBZ ∧ s1.t = good
...

Feature vector: long vector (1-10 M dimensions), indicating 0 or 1 for each
combination feature

Slide credits: Shira Wein, Christopher Manning
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Problems with Conventional Feature Vectors

Optimal feature set hard to choose

May differ for each language/domain!

Incomplete

Sparse

Expensive to compute
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Solution: Dense Vector Representations

Real-valued rather than binary

Dense rather than sparse (few 0’s)

Lower dimensionality (a few 100)

Computed efficiently by deep neural networks

Vector dimensions no longer have straightforward interpretations

With exposure to enough training data, can pick up signals that human feature
engineers might have never thought of
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Core Features + Feature Combinations

Figure from Chen and Manning (2014)
Similiar approach in Pei et al, Weiss et al, Andor et al
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Core Features + Non-Linear Classifier

Figure from Chen and Manning (2014)
Similiar approach in Pei et al, Weiss et al, Andor et al
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Tailored Neural Architecture

Dyer et al. (2015) 1 Kiperwasser and Goldberg (2016) 2

1Transition-based Parsing (S-LSTM + Composition)
2Easy-First Parsing (HT-LSTM)
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Our Approach

We use a simple and elegant BiLSTM encoding as a feature extractor

Achieving accuracies comparable to state-of-the-art parsers

While using very simple features definitions
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BiLSTM Word Representation
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Plug&Play of BiLSTM Features

We use well known parsing techinques

We simply replace each word vector with its BiLSTM representation
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Plug&Play of BiLSTM Features

Graph-based Parsing:

Use the BiLSTM encoding of the head and modifier
Use a multi-layer perceptron to score the attachment

Transition-based Parsing:

Use the BiLSTM encoding of the three words on top
of the stack and the first word on the buffer
Use a multi-layer perceptron to score the transition
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Graph-based Parsing
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Arc Score

Score( modifier head ) = MLP(φ(head ,modifier ; sentence))
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Arc Score (Intuition)

The BiLSTM encoding of a word holds information about its
attachment preferences

The score is dependent on the BiLSTM encoding which in turn
depends on the entire sentence

Therefore, the score function focused on a specific arc is considering
also the entire sentence attachement preferences
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Tree Score
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Large Margin Objective
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Graph-based Parsing (More Details)

Cost Augmentation: Make non-gold attachments more attractive in
training by adding a constant to their score

Multi-Task Learning: Learning the label on the same BiLSTM
representation helps both in terms of accuracy and performance.

For Speed: Simple algebric “trick” reduces the number of matrix
multiplication significantly.
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Arc Labels (Multi-Task Learning)

They ate the pizza with anchovies

nsubj prep

dobj

det nsubj

The arc labels hold important additional syntactic information

The labels contribute information useful for the unlabeled case too
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Arc Labels (Multi-Task Learning)
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Graph-based Parsing

and this works:

93.2 UAS with two features,

first-order parser,

without external embeddings.
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Ablations

Ablation results on the development set:
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Transition-based Parsing
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Transition-based Parsing (Oracle)
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Transition-based Parsing (Learning)

Objective: max
(

0, 1 − maxto∈G MLP
(
φ(c)

)
[to ] + maxtp∈A\G MLP

(
φ(c)

)
[tp]

)

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 32 / 42

Scoring:

LSTM f

xthe

concat

LSTM f

xbrown

concat

LSTM f

xfox

concat

LSTM f

xjumped

concat

LSTM f

xover

concat

LSTM f

xthe

concat

LSTM f

xlazy

concat

LSTM f

xdog

concat

LSTM f

xROOT

concat

LSTMb
s0

LSTMb
s1

LSTMb
s2

LSTMb
s3

LSTMb
s4

LSTMb
s5

LSTMb
s6

LSTMb
s7

LSTMb
s8

Vthe Vbrown Vfox Vjumped Vover Vthe Vlazy Vdog VROOT

MLP

(ScoreLeftArc , ScoreRightArc , ScoreShift)



Logo-BIU.png

Transition-based Parsing (More Details)

Dynamic Oracle: Train the parser to recover from mistaken
transitions by allowing the parser to make mistakes in training and
consider the gold transition as the one making the least “damage”.

Aggressive Exploration: Force the parser to make mistakes in
training in order for it to train on more data.

Labeling Network: Our neural network is the sum of two neural
networks, one assigning score for unlabled arc and the other scores
pairs of arcs and labels. Useful in particular when an arc is connected
because is makes least future mistakes.
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Results

We focus on two kinds of scenarios:

Strictly Supervised: Using only the train data without external
embeddings

Semi-Supervised: Using the train data and external embeddings
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Results (Strictly Supervised)
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Results (Strictly Supervised)

Dyer15: transition (greedy), Stack-LSTM
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Results (Strictly Supervised)

Ballesteros16: transition (greedy, dyn-oracle), Stack-LSTM
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Results (Strictly Supervised)

Martins13: graph, 3rd order+, large feature set (sparse)
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Results (Strictly Supervised)

ZhangNivre11: transition (beam), large feature set (sparse)
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Results CTB (Semi-Supervised)
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Results CTB (Semi-Supervised)

Zhu15: reranking /blend, recursive conv-net
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Results CTB (Semi-Supervised)

Dyer15: transition (greedy), Stack-LSTM
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Results PTB (Semi-Supervised)
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Results PTB (Semi-Supervised)

Weiss15(greedy): transition (greedy), large feature set (dense)

Eliyahu Kiperwasser (Bar-Ilan University) Simple and Accurate Dependency Parsing 40 / 42



Logo-BIU.png

Results PTB (Semi-Supervised)

Ballesteros16: transition (greedy, dyn-oracle), Stack-LSTM
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Results PTB (Semi-Supervised)

LeZuidema14: reranking /blend, inside-outside recursive net
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Results PTB (Semi-Supervised)

Weiss15: transition (beam), large feature set (dense)
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Results PTB (Semi-Supervised)

Andor16: transition (beam), large feature set (dense)
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Results PTB (Semi-Supervised)

BIST-Parser: This work with a twist. Available on github.
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Thank You

Parsers Code: https://github.com/elikip/bist-parser



2021 Update

Timothy Dozat and Christopher Manning (ICLR 2017): Deep Biaffine Attention for
Neural Dependency Parsing

Similar to Kiperwasser and Goldberg’s graph-based parser, with some tweaks
Now the most popular model for dependency parsing (I think)
Most work focusing on further improving the feature extractors

No big new breakthroughs in transition-based parsing
slightly below state-of-the-art
advantages: fast, incremental
popular especially in semantic parsing, cf. e.g., Daniel Hershcovich, Omri Abend, Ari
Rappoport (ACL 2017): A Transition-Based Directed Acyclic Graph Parser for UCCA
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