1 Context free grammar parsing

1.1 Changelog
* 29.04.2021: Clarified definitions, extended examples, added split-head section

1.2 Context free grammar (CFG)

A context free grammar (CFG) is a 4-tuple (N, %,I1,S), where:
* N is a set of non-terminal symbols
* Y is a set of terminal symbols

 T1is a set of production rules of the form X — a, where X € N and a € (N UX)" is a string of terminal
and non terminal symbols

¢ S e N is the start symbol

We write that « = f for some «, f € (X UN)" if B can be obtained from « through a single use of one of the
production rules in I'l. We also denote the transitive and reflexive closure of = as =*. For instance, given
the following grammar:

* N={A,B,C},S=A
e ¥ ={a,b,c}
e [I={A—>AA,A—BC,B—b,C -}
we can derive that:
* ABC = AbC, since B in ABC can be replaced by b following the rule B — b
* ABC = BCBC, since A in ABC can be replaced by BC following the rule A — BC
¢ ABC =" bcbc, since ABC = BCBC = bCBC = bcBC = bcbC = bebe

The last derivation can be also represented as a derivation forest, which abstracts over the exact order of
applying the production rulesﬂ

A B
/N
b

o—0

o — ™
o—20

In CFG, a derivation tree (i.e. a derivation forest with single root) is the same as a derived (or parse) tree,
i.e., the result of parsing a sentence with a CFG grammar. For instance, given the input sentence bcbcbe
and the grammar defined above, a CFG parser could return the following derivation/derived/parse tree:

IFor instance, the same forest could be also obtained with ABC = AbC = Abc = BCbc = Bcbe = bebe.

1.3 Bilexical CFG

A bilexical CFG is a CFG (N, %,I1,S) in which:
« N ={Xt:teX}U{ROOT)
* S =ROOT

¢ IT consists of:

root dependencies ROOT — H
left dependencies H - NH H
right dependencies H - H NH
and terminal dependencies H — h

where H and NH stand for non-terminals and / stands for a terminal symbol.
Here’s an example of a bilexical CFG (taken from the lecture):

* ¥ = {the,dog, barked, at, cat, .}

e IT:
- ROOT — Xbarked - Xdog — Xthe Xdog - Xdog — dog
- Xbarked — Xdog Xbarked - Xat — Xat Xcat — Xbarked — barked
— Xbarked — Xbarked Xat - Xcat — Xthe Xcat - Xat — at
— Xbarked — Xbarked X. — Xthe — the - Xcat — cat

The first rule (ROOT — Xbarked) is a root dependency rule. In a bilexical CFG, there will be one root
dependency rule ROOT — Xt per possible root t of a dependency tree.

All binary rules (i.e. with two symbols in the RHS) are either left dependencies (e.g. Xbarked —
Xdog Xbarked), where the dependent (e.g. ,,dog”) modifies the head (e.g. ,,barked”) from the left, or right
dependencies (e.g. Xbarked — Xbarked Xat), where the dependent modifies the head from the right. Each
binary rule thus captures a single dependent on either side of the head, and it is not possible to capture
more complex constraints such as subcategorization requirements. Such fine-grained factorization can be
however an advantage from the statistical parsing point of view.

Finally, for every non-terminal symbol Xt (with the exception of the ROOT) there is a terminal depen-
dency rule Xt — t, e.g. Xat — at.

Here is an example of a derivation with the grammar given above:

ROOT = Xbarked = Xdog Xbarked = Xthe Xdog Xbarked
= the Xdog Xbarked = the dog Xbarked = the dog barked

which gives the following derivation tree:

ROOT

|
Xbarked

/\
Xdog Xbarked

N |
Xthe Xdog barked

| |
the dog

A bilexical CFG is in the Chomsky Normal Form, with the exception of the unary root rules ROOT — H.
The CYK algorithm (or the parser itself) must be thus slightly modified to handle such rules.

1.4 CYK

We assume as given:
¢ a bilexical CFG G = (N, %,I1,S)
* an input sentence w = wyw;... w, € X* of length n

CYK is a chart parsing algorithm, in which an initially empty chart is progressively populated with items
based on a set of deduction rules which specify how new items can be derived from the already existing
items. Each item has the form [A,i,]], where A€ N and 1 <i <j <n, and it states that A =" w;...w;. The
deduction rules underlying CYK are:

Axiom : m A— w; € 11
B,i,j Cj+1k
Combine: Bl (CIr LKy e
[A,i,k]
We add one additional rule to handle the ROOT:
[A,1,1]
Root: ————— ROOT - Aell
°%t* TROOT, 1, 1] —Aas
1.4.1 Example
Let G =(N,X,I1,S) be a bilexical CFG such that:
o ¥ = {the,dog,barked, at, the, cat, .}
¢ IT consists of the following rules:
- ROOT — Xbarked — Xcat — Xthe Xcat
— Xbarked — Xdog Xbarked — Xthe — the
— Xbarked — Xbarked Xat - Xdog — dog
— Xbarked — Xbarked X. — Xbarked — barked
— Xdog — Xthe Xdog - Xat — at
— Xat — Xat Xcat — Xcat — cat
The tree in Fig.[I]can be then obtained with the fol-
lowing derivation: RO‘OT
1. [Xthe, 1, 1] axiom Xbarked
2. [Xdog, 2, 2] axiom T
3. [Xbarked, 3,3] axiom Xbarked X.
M /\
;L' [))g?;l' 4'5 4; axiont Xdog Xbarked .
. [Xthe, 5, 5] axiom A~ T~
6. [Xcat, 6, 6] axiom Xthe Xdog Xbarked Xat
7. [X.,7,7] axiom \ | \ P
8. [Xdog, 1, 2] combine(1, 2) the dog Dbarked Xat Xcat
9. [Xcat, 5, 6] combine(5, 6) | PN
10. [Xat, 4, 6] combine(4, 9) at Xthe Xcat
11. [Xbarked, 3, 6] combine(3, 10) | |
12. [Xbarked,1,6] combine(8,11) the cat
13. [Xbarked, 1,7] combine(12,7) Fioure 1
14. [ROOT,1,7] root(13) g

In line 1 of the derivation above, [Xthe,1,1] is derived using the axiom deduction rule. The necessary
condition is satisfied: Xthe — wy = Xthe — the € Il. Similarly, the axiom rule is applied (in lines 2-7)
to ,replace” the remaining words with the corresponding non-terminals. In line 8, the combine rule is
applied to [Xthe, 1,1] and [Xdog, 2, 2] (hence ,,combine(1, 2)”, since the two items are derived in lines 1 and
2, respectively) and outputs [Xdog,1,2]. Here as well, the necessary conditions are satisfied: the two items
span adjacent intervals (1,1) and (2,2), and there is a production rule Xdog — Xthe Xdog in the grammar.
The combine rule is similarly used in lines 9-13. Finally, the root deduction rule is used to add the ROOT
node at the top of the tree.

Another tree can be obtained with the same grammar for the same sentence, as shown below. Both
trees (in Fig. 1| and Fig. [2) however encode the same dependencies, hence this is an example of spurious
ambiguity. It can be avoided using the split-head representation (see Sec. 2).

1. [Xthe, 1, 1] axiom ROOT

2. [Xdog, 2, 2] axiom \

3. [Xbarked, 3,3] axiom Xbarked

4. [Xat, 4, 4] axiom — T

5. [Xthe, 5, 5] axiom Xbarked X.

6. Xcat, 6, 6 axiom

7. {X., 7,7] ! axiom w /Xat\ ’

8. [Xdog, 1, 2] combine(1, 2) Xdog Xbarked Xat Xcat

9. [Xcat,5, 6] combine(5, 6) o~ \ ‘ PN

10. [Xat, 4, 6] combine(4, 9) Xthe Xdog barked at Xthe Xcat

11. [Xbarked, 1,3] combine(8, 3) | \ | |

12. [Xbarked, 1,6] combine(11,10) the dog the cat
(12,7)

13. [Xbarked, 1,7] combine
)

14. [ROOT,1,7] root(13 Figure 2

1.5 Time complexity analysis

The theoretical time complexity of CYK parsing for bilexical CFGs can be estimated based on the corre-
sponding deduction rules, and more precisely on the number of possible instantiations of these rules. The
,most costly” rule is combine, with two antecedent items, [B,i,j] and [C,] + 1,k], and the consequent item
[A,1,k]. In general, there are O(IN]?) ways to instantiate A, B and C, but in bilexical CFG A must be equal
to either B (right dependency) or C (left dependency), hence this is reduced to O(IN|?). There are also
(’)(n3) ways to instantiate 7, j, and k, and therefore the time complexity is (’)(INI2 X n3). Furthermore, N can
be restricted to {wy,...,w,} U{ROOT} (and |[N| = n+ 1), since B and C (and A) can be only instantiated to
non-terminals related to the words present in the sentence (or ROOT). Therefore:

O(NP>xn3) =0((n+1)? xn®) = O((n* + 2n+ 1) x n®)
=O(n® +2n* + n®) = O(n®) (see this)

2 Split-head CFG

A split-head CFG is a CFG (N, X,T1, S) defined on top of the set of words W in which:
e Y={w:weWlU{w :we W)
e N={Xw:weW}U{lw:we W}U{Rw:we W}U{ROOT}
* S=ROOT

e ITis constructed as follows:

https://en.wikipedia.org/wiki/Big_O_notation#Sum

Word w € W can be a root:
ROOT — Xw

We collect left and right dependents separately:
Xw — Lw Rw

Left (v « w) and right (w — v) dependencies:
Lw— Xv Lw
Rw — Rw Xv

Two lexical rules per word:
Lw — v
Rw —w'

2.1 Example

Consider the following dependency tree:

nll

ROOT the cat likes the drilling machine

Task: Determine the (smallest) split-head CFG that allows to parse the sentence (and obtain the desired
dependency tree) and show the corresponding constituency tree

Solution: The set of terminals is the set of words in the tree:
o ¥ = {the,cat,likes, drilling, machine}

Next we determine the production rules. The root of the tree is likes, hence:
¢ ROOT — Xlikes

The potential dependents of likes are cat on the left, machine on the right. In the split-head representation,
we have two different non-terminals to collect the left dependencies (Llikes) and the right dependencies
(Rlikes), and a rule to ,,split” Xlikes into the two:

e Xlikes — Llikes Rlikes
o Llikes — Xcat Llikes
e Rlikes — Rlikes Xmachine

The dependents are collected the same way for all the other words with dependents:

e Lcat — Xthe Lcat e Lmachine — Xthe Lmachine

* Lmachine — Xdrilling Lmachine
And, whether a word has dependents or not, we need the corresponding ,,splitting” rule:

o Xthe — Lthe Rthe * Xdrilling — Ldrilling Rdrilling

e Xcat — Lcat Rcat e Xmachine — Lmachine Rmachine

Finally we have to add the lexical rules (two per word):

e Lthe — the' o Llikes — likes' e Lmachine — machine'
* Rthe — the" e Rlikes — likes” e Rmachine — machine”
* Leat — cat! e Ldrilling — drilling’
* Rcat — cat” * Rdrilling — drilling

The corresponding constituency tree is:

ROOT
Xlikes
Llikes Rlikes
Xcat Llikes Rlikes Xmachine
Lcat Reat likes! likes” Lmachine Rmachine
Xthe Lcat cat” Xthe Lmachine machine”
Lthe Rthe cat! Lthe Rthe Xdrilling Lmachine
\ \ \ \ T~ \
the! the the! the’ Ldrilling Rdrilling machine!

! \
drilling! ~ drilling”
Note that there is only one way to parse the underlying sentence with the grammar specified above.
There is no spurious ambiguity (like in bilexical CFG, see Sec.|[1.3).

2.2 Time complexity analysis

As in Sec. we estimate the time complexity of CYK parsing for split-head CFGs based on the number
of possible instantiations of the CYK dedudction rules (when the grammar is a split-head CFG).

The improved complexity of CYK in this setting stems from the following invariants preserved by the
deduction rules (within the context of a split-head CFG):

¢ Invariant 1: for each item of the form [Lwy, 1,], it holds that j = 2] -1

¢ Invariant 2: for each item of the form [Rwy, i, f], it holds that i = 2]

Put differently, for any item of the form [Lwy, i, j] ([Rwy, 1, j], respectively) the word w; determines the end of
the span j = 2/-1 (beginning of the span i = 2I). This is thanks to the fact that the left and right dependents
are collected independently in the split-head representation.

We now focus on the combine deduction rule and consider the different forms of binary production
rules in the split-head representation case by case:

1. Left dependencies:

(Xwy,i,j] [Lwy,j+1,2m—1]
[Lw,,,i,2m—1]

Lw,, — Xw;Lw,, €1

There are O(n4) ways to instantiate i, j, I, and m, and there are no other free variables.
2. Right dependencies:

[Rwy,2L,j] [Xwp,j+1,k]
[Rwl,2l,k]

Rw; - Rw; Xw,, €Il

There are O(n4) ways to instantiate j, k, [, and m.

3. Split dependencies:

[Lwl,i, 2] - 1] [Rwl,2l,k]
[le, l,k]

Xw; — LwjRw; €T1

There are O(n3) ways to instantiate i, k, and I.

Hence in total there are O(n*) + O(n*) + O(n®) = O(n*) ways to instantiate the combine deduction rule.

	Context free grammar parsing
	Changelog
	Context free grammar (CFG)
	Bilexical CFG
	CYK
	Example

	Time complexity analysis

	Split-head CFG
	Example
	Time complexity analysis

