
Detaillierte	Testergebnisse	für	Testdurchlauf	1

1.	Single	choice	#1	[ID:	685974]

A	parser	that	starts	in	an	initial	state	and	uses	a	machine	learning	model	to	repeatedly
decide	into	which	state	to	go	next	until	the	parse	is	complete	is	called…

transition-based
graph-based
static
dynamic

2.	Single	choice	#2	[ID:	685975]

A	dependency	tree	is	called	projective	if	for	every	arc	i	→	j	and	every	word	k	between	i
and	j	it	holds	that

there	is	an	arc	i	→	k
i	dominates	k
there	is	an	arc	k	→	i
k	dominates	i

3.	Single	choice	#3	[ID:	685976]

A	key	difference	between	the	Chu-Liu-Edmonds	algorithm	and	the	Eisner	algorithm	is:
Chu-Liu-Edmonds	finds	projective	and	non-projective	trees;	Eisner	finds	only
projective	trees.
Chu-Liu-Edmonds	is	graph-based;	Eisner	is	transition-based.
Eisner	finds	graphs	with	and	without	cycles;	Chu-Liu-Edmonds	only	finds	graphs
without	cycles.
Eisner	is	graph-based;	Chu-Liu-Edmonds	is	transition-based.

4.	Single	choice	#4	[ID:	685977]

The	arc-eager	transition	system	has	a	REDUCE	transition,	which	the	arc-standard
transition	system	does	not.	Why	does	it	need	this	additional	transition?
The	RIGHT-ARC	transition	does	not	remove	the	child	of	the	new	arc	from	the	parser's
data	structures.
The	LEFT-ARC	transition	does	not	remove	the	child	of	the	new	arc	from	the	parser's
data	structures.
Neither	the	LEFT-ARC	nor	the	RIGHT-ARC	transition	remove	the	child	of	the	new	arc
from	the	parser's	data	structures.
REDUCE	allows	the	parser	to	remove	certain	words	from	the	stack	earlier,	resulting	in
faster	parsing	speeds.

5.	Single	choice	#5	[ID:	685978]



Consider	the	following	two	example	sentences:
(1)	Das	Bild	hängt	hinter	dem	Schrank.
(2)	The	phone	is	lying	on	the	table.
The	phrases	highlighted	in	bold	are	examples	of	prepositional	objects.	In	Universal
Dependencies	v2,	the	dependency	to	connect	them	to	the	verb	is	labeled

nsubj
dobj
iobj
obl

6.	Complete	a	dependency	tree	[ID:	685972]

Below,	you	are	given	a	German	and	an	English	incomplete	dependency	tree.	They	are
shown	graphically	and	in	a	textual	form.	Choose	either	the	German	or	the	English
sentence	and	complete	its	dependency	tree,	using	the	same	textual	form.

führen	--nsubj-->	Therapie
führen	--aux-->	soll
Therapie	--nmod:poss-->	Welt
normalen	--advmod-->	vielleicht
führen	--punct-->	.



quarantines	--mark-->	But
quarantines	--advcl-->	surging
surging	--mark-->	with
hundreds	--nmod-->	thousands
surging	--punct-->	,
quarantines	--case-->	in
quarantines	--punct-->	
Therapie	--det-->	Die
Therapie	--amod-->	teuerste
Welt	--det-->	der
führen	--obj-->	ihn
führen	--obl-->	Leben
Leben	--case-->	zu
Leben	--det-->	einem
Leben	--amod-->	normalen
normalen	--advmod-->	ganz

numbers	--compound-->	case
case	--compound-->	coronavirus
surging	--nsubj-->	numbers
thousands	--case-->	of
people	--case-->	of
thousands	--nmod-->	people
quarantines	--nsubj-->	hundreds
quarantines	--cop-->	were



Unbegrenzt	Zeichen	zugelassen,	Anzahl	der	eingegebenen	Zeichen:	397

7.	Complete	a	transition	sequence	[ID:	685973]

Remember	the	definition	of	the	arc-eager	transition	system:

Also	remember	the	static	oracle	we	defined	for	it:

Here's	a	gold	dependency	tree:

What	is	the	transition	sequence	the	static	oracle	generates	for	this	tree?	The	first	four
steps	are	given	below.	Please	write	down	the	remaining	steps.	For	each	step,	indicate
the	action,	the	new	state	of	the	stack	and	of	the	buffer,	and	the	new	dependency	arc,	if
any.
0)	Stack:	[ROOT];	Buffer:	[He	was	heavily	criticized	.]
1)	Transition:	SH;	Stack:	[ROOT	He];	Buffer:	[was	heavily	criticized	.]
2)	Transition:	SH;	Stack:	[ROOT	He	was];	Buffer:	[heavily	criticized	.]
3)	Transition:	SH;	Stack:	[ROOT	He	was	heavily];	Buffer:	[criticized	.]
4)	Transition:	LA_advmod;	Stack:	[ROOT	He	was];	Buffer:	[criticized	.];	New	arc:	criticized
--advmod-->	heavily
...



5)	Transition:	LA_aux:pass;	Stack:	[ROOT	He];	Buffer:	[criticized	.];	New	arc:
criticized	--aux:pass-->	was
6)	Transition:	LA_nsubj:pass;	Stack:	[ROOT];	Buffer:	[criticized	.];	New	arc:
criticized	--nsubj:pass-->	He
7)	Transition:	RA_root;	Stack:	[ROOT	criticized];	Buffer:	[.];	New	arc:	ROOT	--
root-->	criticized
8)	Transition:	RA_punct;	Stack:	[ROOT	criticized	.];	Buffer:	[];	New	arc:
criticized	--punct-->	.

Unbegrenzt	Zeichen	zugelassen,	Anzahl	der	eingegebenen	Zeichen:	408

8.	Chu-Liu-Edmonds	[ID:	685971]

Assume	the	arc	weights	for	the	sentence	Mary	was	seen	by	John	are	given	by	the
following	complete	digraph.	(Arcs	weighted	0	are	not	shown.	Assume	that	weights	are
not	in	log	scale,	so	need	to	be	multiplied	and	not	added.)

The	first	step	of	the	Chu-Liu-Edmonds	algorithm	is	to	keep	only	the	incoming	arc	with
the	heighest	weight	for	each	node:



Since	this	graph	has	a	cycle	between	"John"	and	"by",	these	nodes	are	contracted	(we
show	this	by	making	the	arcs	between	them	light	gray)	and	the	arc	weights	are
recalculated.	The	result	is	for	this	step	is…	which	of	the	following	graphs?	Explain	why.
A)

B)



C)

D)



D)	is	correct.

Concerning	outgoing	arcs	from	the	cycle,	we	have	to	consider	those	to	"was".
There	is	one	with	weight	5	coming	from	"John"	and	one	with	weight	3	coming
from	"by".	We	choose	the	former	because	it	has	the	higher	weight.

Concerning	incoming	arcs	into	the	cycle,	we	have	one	with	weight	10	from
"seen"	to	"john"	and	one	with	weight	3	from	"Mary"	to	"by".	If	we	choose	the
former,	we	need	to	drop	the	arc	from	"by"	to	"John"	to	break	the	cycle.	If	we
choose	the	latter,	we	need	to	drop	the	arc	from	"John"	to	"by"	to	break	the
cycle.	Now	we	have	to	multiply	the	weights	of	the	incoming	arcs	with	all	arc
weights	in	the	cycle,	except	the	one	we	drop.	Thus,	we	multiply	the	former
with	10,	giving	100,	and	the	latter	with	15,	giving	45.

Unbegrenzt	Zeichen	zugelassen,	Anzahl	der	eingegebenen	Zeichen:	742


